70 research outputs found

    High motor variability in DYT1 dystonia is associated with impaired visuomotor adaptation.

    Get PDF
    For the healthy motor control system, an essential regulatory role is maintaining the equilibrium between keeping unwanted motor variability in check whilst allowing informative elements of motor variability. Kinematic studies in children with generalised dystonia (due to mixed aetiologies) show that movements are characterised by increased motor variability. In this study, the mechanisms by which high motor variability may influence movement generation in dystonia were investigated. Reaching movements in the symptomatic arm of 10 patients with DYT1 dystonia and 12 age-matched controls were captured using a robotic manipulandum and features of motor variability were extracted. Given that task-relevant variability and sensorimotor adaptation are related in health, markers of variability were then examined for any co-variance with performance indicators during an error-based learning visuomotor adaptation task. First, we confirmed that motor variability on a trial-by-trial basis was selectively increased in the homogenous and prototypical dystonic disorder DYT1 dystonia. Second, high baseline variability predicted poor performance in the subsequent visuomotor adaptation task offering insight into the rules which appear to govern dystonic motor control. The potential mechanisms behind increased motor variability and its corresponding implications for the rehabilitation of patients with DYT1 dystonia are highlighted

    Using Risk Assessment as Part of a Systems Approach to the Control and Prevention of HPAIV H5N1

    No full text
    Since its emergence in China in 1996, highly pathogenic avian influenza virus subtype H5N1 has spread across Asia, Africa, and Europe. Countries had to promptly implement control and prevention measures. Numerous research and capacity building initiatives were conducted in the affected regions to improve the capacity of national animal health services to support the development of risk-based mitigation strategies. This paper reviews and discusses risk assessments initiated in several South-East Asian and African countries under one of these projects. Despite important data gaps, the risk assessment results improved the ability of policy makers to design appropriate risk management policies. Disease risk was strongly influenced by various human behavioral factors. The ongoing circulation of HPAIV H5N1 in several Asian countries and in Egypt, despite major disease control efforts, supports the need for an interdisciplinary approach to development of tailored risk management policies, in accordance with the EcoHealth paradigm and the broad concept of risk governance. In particular, active stakeholders engagement and integration of economic and social studies into the policy making process are needed to optimize compliance and sustainable behavioral changes, thereby increasing the effectiveness of mitigation strategies

    Sensorimotor adaptation as a behavioural biomarker of early spinocerebellar ataxia type 6.

    Get PDF
    Early detection of the behavioural deficits of neurodegenerative diseases may help to describe the pathogenesis of such diseases and establish important biomarkers of disease progression. The aim of this study was to identify how sensorimotor adaptation of the upper limb, a cerebellar-dependent process restoring movement accuracy after introduction of a perturbation, is affected at the pre-clinical and clinical stages of spinocerebellar ataxia type 6 (SCA6), an inherited neurodegenerative disease. We demonstrate that initial adaptation to the perturbation was significantly impaired in the eighteen individuals with clinical motor symptoms but mostly preserved in the five pre-clinical individuals. Moreover, the amount of error reduction correlated with the clinical symptoms, with the most symptomatic patients adapting the least. Finally both pre-clinical and clinical individuals showed significantly reduced de-adaptation performance after the perturbation was removed in comparison to the control participants. Thus, in this large study of motor features in SCA6, we provide novel evidence for the existence of subclinical motor dysfunction at a pre-clinical stage of SCA6. Our findings show that testing sensorimotor de-adaptation could provide a potential predictor of future motor deficits in SCA6

    Variations in task constraints shape emergent performance outcomes and complexity levels in balancing

    Get PDF
    This study investigated the extent to which specific interacting constraints of performance might increase or decrease the emergent complexity in a movement system, and whether this could affect the relationship between observed movement variability and the central nervous system's capacity to adapt to perturbations during balancing. Fifty-two healthy volunteers performed eight trials where different performance constraints were manipulated: task difficulty (three levels) and visual biofeedback conditions (with and without the center of pressure (COP) displacement and a target displayed). Balance performance was assessed using COP-based measures: mean velocity magnitude (MVM) and bivariate variable error (BVE). To assess the complexity of COP, fuzzy entropy (FE) and detrended fluctuation analysis (DFA) were computed. ANOVAs showed that MVM and BVE increased when task difficulty increased. During biofeedback conditions, individuals showed higher MVM but lower BVE at the easiest level of task difficulty. Overall, higher FE and lower DFA values were observed when biofeedback was available. On the other hand, FE reduced and DFA increased as difficulty level increased, in the presence of biofeedback. However, when biofeedback was not available, the opposite trend in FE and DFA values was observed. Regardless of changes to task constraints and the variable investigated, balance performance was positively related to complexity in every condition. Data revealed how specificity of task constraints can result in an increase or decrease in complexity emerging in a neurobiological system during balance performance

    Hiding Relations

    Get PDF
    The present vogue of ‘managing for development results’ is an expression of a historically dominant mode of thought in international aid – ‘substantialism’ – which sees the world primarily in terms of ‘entities’ such as ‘poverty’, ‘basic needs’, ‘rights’, ‘women’, or ‘results’. Another important mode of thought, ‘relationalism’ – in association more generally with ideas of process and complexity – appears to be absent in the thinking of aid institutions. Drawing on my own experiences of working with the UK Department for International Development (DFID), I illustrate how despite formally subscribing to the institution’s substantialist view of the world, some staff are ‘closet relationists’, behaving according to one mode of thought while officially framing their action in terms of the other, more orthodox mode. In so doing, they may be unwittingly keeping international aid sufficiently viable - by the apparent proof of the efficacy of results-based management - to enable the institution as a whole to maintain its substantialist imaginary

    Effects of macromolecular crowding on intracellular diffusion from a single particle perspective

    Get PDF
    Compared to biochemical reactions taking place in relatively well-defined aqueous solutions in vitro, the corresponding reactions happening in vivo occur in extremely complex environments containing only 60–70% water by volume, with the remainder consisting of an undefined array of bio-molecules. In a biological setting, such extremely complex and volume-occupied solution environments are termed ‘crowded’. Through a range of intermolecular forces and pseudo-forces, this complex background environment may cause biochemical reactions to behave differently to their in vitro counterparts. In this review, we seek to highlight how the complex background environment of the cell can affect the diffusion of substances within it. Engaging the subject from the perspective of a single particle’s motion, we place the focus of our review on two areas: (1) experimental procedures for conducting single particle tracking experiments within cells along with methods for extracting information from these experiments; (2) theoretical factors affecting the translational diffusion of single molecules within crowded two-dimensional membrane and three-dimensional solution environments. We conclude by discussing a number of recent publications relating to intracellular diffusion in light of the reviewed material

    Scalable rule-based modelling of allosteric proteins and biochemical networks

    Get PDF
    Much of the complexity of biochemical networks comes from the information-processing abilities of allosteric proteins, be they receptors, ion-channels, signalling molecules or transcription factors. An allosteric protein can be uniquely regulated by each combination of input molecules that it binds. This "regulatory complexity" causes a combinatorial increase in the number of parameters required to fit experimental data as the number of protein interactions increases. It therefore challenges the creation, updating, and re-use of biochemical models. Here, we propose a rule-based modelling framework that exploits the intrinsic modularity of protein structure to address regulatory complexity. Rather than treating proteins as "black boxes", we model their hierarchical structure and, as conformational changes, internal dynamics. By modelling the regulation of allosteric proteins through these conformational changes, we often decrease the number of parameters required to fit data, and so reduce over-fitting and improve the predictive power of a model. Our method is thermodynamically grounded, imposes detailed balance, and also includes molecular cross-talk and the background activity of enzymes. We use our Allosteric Network Compiler to examine how allostery can facilitate macromolecular assembly and how competitive ligands can change the observed cooperativity of an allosteric protein. We also develop a parsimonious model of G protein-coupled receptors that explains functional selectivity and can predict the rank order of potency of agonists acting through a receptor. Our methodology should provide a basis for scalable, modular and executable modelling of biochemical networks in systems and synthetic biology

    Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex

    Get PDF
    corecore